

Consultative Committee for Space Data Systems (CCSDS)

CCSDS Panel Work

Current CCSDS Space/Ground Communications Protocol Stack

NASA Telemetry Standardization

"Packet" Spacecraft Telemetry and Telecommand

Basic Space/Ground Communications Standards for **Space Missions**

NASA/ESA

Consultative Committee for Space Data Systems (CCSDS)

Extension of the Terrestrial Internet

into Space

Extension of Standards for **More Complex Space Missions**

International Space Station

NASA/DOD Space **Communications Protocol** Standards (SCPS) Project

> InterPlaNetary Internet (IPN)

Evolution of the terrestrial Internet

Tomorrow's "Earthnet"

Untethered edge-market 'plug-ins' to the fiber backbone [satellites, wireless, mobile ad-hoc networks, etc.] may introduce:

Significant delay & errors
Power/bandwidth constraints
Disjoint connectivity
Corruption as source of loss
Asymmetric channels

A Candidate Sharing of Issues and Technologies

· Generally high bandwidth-delay products **Surface** Possible data loss due to bit-errors and/or Satellite, transient link outages to Orbit Wireless Potentially asymmetric data rates Relay Power constrained end systems Episodic/disjoint connectivity Mobile/ Networks may need to be self-organizing **Surface** Roving **Operations** applications Channels often periodically unidirectional • Need for progressive/selectable reliability Need for store-and-forward delivery Long Ultra high bandwidth-delay product Haul to Internet • typically >> transaction size backbone Earth · 'Ping-pong of bursts' replaces streaming

IPN l everage

The Basic IPN Concept: Construct a "Network of Internets"

- Deploy standard internets in low latency remote environments (e.g., on other planets, on remote spacecraft)
- Connect these distributed internets via an interplanetary backbone that handles the high latency deep space environment.
- Create gateways and relays to interface between low and high latency environments

What's a Backbone?

- > A set of high-capacity, high-availability links between network traffic hubs
 - Terrestrial backbone links are between hubs like Houston and Chicago.
 - Interplanetary backbone links are between hubs like Earth and Mars.

On the Interplanetary Backbone:

- Communications capacity is expensive
 - Bits count
- Round Trips hurt
 - Interactive protocols don't work
 - Internet protocol suite doesn't scale well with increasing latency
 - Negotiation is impractical
 - · Reliable in-order delivery takes too long
 - Protocols need to be connectionless
 - Congestion control and flow control are difficult
 - Reliance on forward coding versus retransmission for error recovery
- Custodial store-and-forward data transfer is fundamental
 - "Chatty Telephony" gives way to "Bundled Mail" as the model of operations

Resulting Backbone **Differences**

Backbone

Terrestrial Interplanetary Backbone

Transport

TCP

"Bundling"

Network

IP

IP, NP, None?

Link

SONET

CCSDS

Physical

Optical fiber

R/F or laser

IP: the "Thin Waist" of the Earth's Internet

Bundles: A Store and Forward Overlay - the "Thin Waist" of the Interplanetary Internet

Network of disconnected Internets spanning dissimilar environments

Bundling supports end-to-end transfer across a "network of disconnected Internets" having heterogeneous network protocol stacks

Bundling: Design Principles

- Inter-Internet Dialog Interplanetary Gateways
 Security
 Deployed Internets Stable Backbone
- Names are the means of reference
 - Names have two parts: a <u>routing part</u> (specifies the IPN region) and an <u>administrative part</u> (specifies the DNS name)
 - Routing between IPN regions based upon routing part of the name

Late-Binding

 Separate addressing domains for each internet; administrative names converted to local addresses in destination IPN region

• Indirection

Inherent dependence on intermediate relay agents

Custodial transfer

- "Bundles" are the common end-to-end transfer mechanism

Single Name Space, Late Name-to-Address Binding(s)

Name:

{routing part: earth.sol, admin part: http://www.bughunter.org}

Local Address: 137.79.10.232

Name:

{routing part: mars.sol, admin part: http://www.rockshop.com}

Local Address: 137.79.10.232

Interplanetary Internet Deployment Plan

Basic R&D

Sponsored

Basic IPN Architectural Definition

Development of Key Protocols

Protocol Test and Validation

Earth Vicinity, 2001

Lunar Vicinity, 2002

Mars 2003+

New Capability Demonstrations

Space Mission Infusion and Rollout

